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Recommended Precursor Observations

 HST precursor observations

— HST/WFC3/UVIS + ACS observations for pre-WFIRST
astrometry

— HST/WFC3J/IR time series observations for photometry/
astrometry pipeline code development

« Ground-based IR microlensing survey to measure
lensing rate and select WFIRST-AFTA fields

* Development of Microlensing Expertise
— HST and AO follow-up of current planet detections
— Kepler (K2) and Spitzer parallaxes

— Develop microlensing analysis methods
* 1 (out of ~50) ground-based planetary light curve not modeled
« Possibly many stellar binary + planet light curves not recognized



Lens System Mass and Distance from
Microlensing Light Curves

* binary lens light curve gives mass ratio, q, and separation, s
(in units of R¢ )

* t- depends on M,, but also on v, and D,

t.=R,/v, where R, = \/4GMLDSx(1 - x)/c¢* and x=D, /D,
* There are two ways to improve upon this with light curve data:

— Planetary light curves usually give source radius crossing
time, t.

— Determine the angular Einstein radius : 6= 0.4/t = tzu
where 6. is the angular radius of the star and u,, is the
relative lens-source proper motion

— Measure the projected Einstein radius, 7 , with the
microlensing parallax effect (due to Earth’s orbital motion).
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~__ Lens System Properties

observer\

« Einstein radius : 6z= 6.t-/t. and projected Einstein radius,
— 6. = the angular radius of the star
— I from the microlensing parallax effect (due to Earth’s orbital motion).
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Finite Source Effects & Microlensing
Parallax Yield Lens System Mass

Sourc
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Finite Source Effects & Microlensing
Parallax Yield Lens System Mass

* If only 6 or ;. is measured,
then we have a mass-distance
relation.

« Such a relation can be solved if
we detect the lens star and use
a mass-luminosity relation

—This requires HST or ground-based
adaptive optics

* With 6, ., and lens star
brightness, we have more
constraints than parameters

mass-distance relations:
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Bright Lens Stars Detected in WFIRST

Frames
L A ) ll 1 1 TP rrnl
- All Detections (Main Sequence) -
- Planet Mass to 20% .
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* The brightness of the lens can be
combined with a mass-luminosity
relation to yield the lens system mass

* The direction of the u,, helps
determine ||

 Masses of faint lens stars, brown 0.05
dwarfs and stellar remnants are
harder to determine.

M/M,,



Determination of Host Star and Planet
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Lens+Source Solutlon

* Lens brightness vs. mass
prediction (from Bennett, 0.6 -
Anderson & Gaudi 2007) g
* |-band flat spot at =L
* Resolved with multiple N el R R
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Demonstration of WFIRST Mass

Measurement Method
HST image of OGLE-2005-BLG-169Lb — 6.5 years after discovery
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Lens motion away from source

Motion easily detectable after 2.5 years, but HST TAC not cooperative until 6.5 years

(Bennett et al, in preparation)



Lens-Source Relative Proper Motion from
Planetary Signal Confirmed
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HST Observations & PSF Fitting

Lensis 52% of total flux in I-band | Lens is 36% of total flux in V-band

Centroid shift implies Source star has higher flux ratio

Aparna Bhattacharya EEEND
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Light Curve Models

Discovery paper light curve' Light curve consistent with HST
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High Angular Resolution Follow-up

Lens-source relative proper motion signal of u,., was
strong for OGLE-2005-BLG-169

WFIRST-AFTA will have a smaller time baseline
(< 6.5 years) and larger PSF but many more
observations

To predict WFIRST-AFTA performance, we need to
understand the systematic errors

Current HST program has 4 more targets to be
analyzed, but there are 40 more that could be
observed.



Parallax and Relative Proper Motion or
Astrometric Microlensing

1
Microlensing parallax 77 =— and
rE
relative proper motion H. = , = ;
E k

are both 2-d vectors — and they are parallel

T is often measured more precisely in 1 direction
(Earth’s acceleration direction) than the other

A measurement of y., improves the precision of ||

Astrometric microlensing yields the same
information as y,,, : 6z and direction of lens-source
motion
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Terrestrial ylensing Parallax Measures Masses
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Geosynchronous vs. L2 Microlensing Parallax
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(Gould, Gaudi & Han 2003)
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Astrometric Microlensing
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Astrometric Microlensing
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Astrometrlc Mlcrolensmg
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Centroid motion is small (~0.1 mas) except for black hole lenses (i.e. Sahu HST
programs). Needed for dark lenses without finite source effects — stellar remnant
mass function. Long time baseline needed for a precise measurement — we need to
know the source proper motion to high precision.




Astrometric Microlensing
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Optical HST Imaging

An immediate, optical
HST survey of the
WFIRST fields will allow
proper motion
measurements for 22% of
WEIRST stars = Direct
verification of WFIRST
microlens astrometry.

Reliable microlens astrometry measurements are
vital to measuring planet masses with WFIRST.




Optical HST Imaging

 Early measurements provide precision
test for WFRIST astrometry

* Long time baseline will greatly improve
astrometric microlensing
measurements (critical for stellar
remnant mass measurements)

* Develop WFIRST exoplanet mass
measurement method

» Help select HST fields

* Colors of stars in WFIRST field -
temperature, extinction, metallicity

« WFIRST relative astrometry + GAIA
absolute astrometry + HST colors -
Detailed structure of the galaxy



IR HST (WFC3) Imaging

* Develop WFIRST exoplanet mass
measurement method

* Help select WFIRST exoplanet
microlensing fields

* Practice data for development of
WFIRST exoplanet microlensing
photometry/astrometry pipeline

« critical for early science
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Measure the Microlensing Rate in
Target Fields with an IR Survey

MOA-II mlcrolensmg rate maps
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Ground-Based, Near-IR, Microlensing

Survey

| [
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Extinction map: Gonzalez et al. 2012

1Mc,+, Planet Rate

Tentative
WFIRST field
based on our
current
understanding,
extrapolations,
and
assumptions.




Ground-Based, Near-IR, Microlensing
Survey

Measured microlensing Ve
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Major Observational Programs

* Directly support WFIRST science and reduce its
scientific risk:

— Early, optical, HST imaging of the WFIRST field

— A preparatory, ground-based, microlensing
survey in the near-IR

« Develop technigues for measuring (planet) masses:

— Satellite parallax observations using Spitzer,
Kepler, and TESS

— HST or AO flux measurements of lenses in
ground-based microlensing events

— Measurements of microlens astrometry for black
holes



Early HST Optical Observations of
WFIRST Fields

8-10 year time baseline WFIRST—-NRO Fields & Extinction Map
4 I | I I I I I I | I 15
, _ _ - WFIRST-AFE ields 3
Relative proper motions for faint - centra Molml 1
sources — resolved or nearly § - s .
2 |l - - " u

resolved in early observations

Long baseline for source proper
motion — needed for astrometricx 0
microlensing

~750 orbits for all WFIRST ML fields. .,

A smaller program will allow a test of
astrometry from WFIRST data,
which has high S/N due to —4
~40,000 observations

32



Ground-based IR Microlensing Survey

« WFIRST will go much deeper than a ground-based

survey
« We want to know how the lensing rate depends on source
magnitude
» Get rate of rare high magnification events => >1000 events

* VVV survey on Vista has too few observations
» But telescope is capable if we could get a lot of time

 UKIRT
* Need 2-3 hrs per night, 5 months per year for 3+ years

 Namibia Telescope

« Sumi proposal (got to 2" round this year)
* H4RG detectors from WFIRST test program



New Photometry/Astrometry code needed

HS P -hand

These images are from MACHO fields with low extinction
WFRIST-AFTA fields will be closer to the plane with 2-3 % the stellar
density

Proper motion of neighbor stars will be a significant source of
photometry errors

A time series of HST/WFC3/IR data will allow us to test photometry code



Blow-up of HST/WFCJ/IR Image

HST J-band




Microlensing Survey Stars Will Not Be Isolated

* Proper motion of neighboring stars will contribute to
photometry noise
« We want a WFIRST-AFTA exoplanet microlensing pipeline

that generates
* Photometry
» Astrometry
A catalog of detector defects

* Develop exoplanet microlensing photometry+astrometry
pipeline pre-launch using a time series of HST/WFC3/IR

data
« 3 epochs needed to get both proper motion and parallax



Microlensing Expertise

» Pre-2003 — microlensing yields only mass ratio and separation/R,
« 2006 — lens identification and mass measurement from HST follow-up

« 2008 — microlensing can yield lens masses and orbital inclination

— Microlensing parallax signals are stronger for binary and planetary events
than for single lens events

« 2010-ish — circumbinary planet

« 2014 — planet in strong stellar binary system
— perhaps some planets have been missed

« # of Dark Energy Scientists = 102x(# of Microlensing Scientists)
— Most major observing programs have no or only small US component
—But US (ND and OSU groups) lead in microlensing theory & analysis

» Analysis of real data is key to developing expertise, so
—More HST and Keck AO follow-up of planetary microlensing events
— Satellite parallaxes with Spitzer, Kepler or other spacecraft far from Earth
— Support of ongoing microlensing observing programs



Microlensing Manpower

» US microlensing community is small.
 Largely because of NSF funding issues. NSF will not fund
telescopes or instruments beyond its own facilities

— MACHO Project was funded by DOE and an NSF Center
(outside the normal process)

— Andicam instrument for CTIO — not a survey

— SuperMACHO failed because it couldn’t get enough
observing time (smaller telescope with more time would
have been better).

— LCOGT - but follow-up only
 Strategies for growing the US Microlensing Community
— Extra support for students and postdocs

— Extra support for research that broadens the community
— Support for foreign microlensing surveys



